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Abstract— An empirical equation of state that is thermodynamically consistent is found for the alpha
(body-centered-cubic) and epsilon (hexagonal-close-packed) phases of iron. It is fit to all available
types of experimental data—calorimetic, thermal expansion, acoustic, static compression, and shock
data. All thermodynamic identities are satisfied, since expressions for all observables are derived from
a thermodynamic potential. No specific theoretical assumptions are made, but the Helmholtz potential
is formulated in terms of a number of adjustable functions of single variables by applying some gen-
eral considerations of lattice vibrations, conduction electrons, and ferromagnetic exchange interaction.
The effective Gruneisen parameter depends on temperature as well as volume. Ultrasonic and shock
data for the alpha phase are found to be consistent with X-ray determinations of compression based on
the sodium chloride standard. The Slater and Dugdale-MacDonald relations are tested against the
fit at low pressure and are found to be in error. At high pressure not enough different types of data

exist to establish a unique fit without theoretical assumptions.

1. INTRODUCTION

THis work was undertaken to find an equation
of state to be used in a calculation reported
elsewhere[1] of shock wave propagation with
a phase transformation. A thermodynamically
consistent equation of state based on all
types of available experimental data was
desired, for earlier work was lacking in these
respects. The inversion of experimental data
to find a thermodynamic potential turned out
to be a large task in itself. We hope that the
work has value, not only as an empirical fit
for iron, but as a review of experimental data,
as a test of consistency of different kinds of
data, and as an indication of what theoretical
predictions are required to establish the equa-
tion of state of iron uniquely.

Thermodynamic consistency is guaranteed
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by deriving all thermodynamic quantities
from a Helmholtz potential. Contributions to
the potential from lattice vibrations, conduc-
tion electrons, and magnetic exchange inter-
actions are included. Expressions for these
contributions are derived, initially, in terms
of general functions of single variables. For
the purpose of applying the equation of state,
specific functional forms are then assumed,
and data are fit by adjusting parameters occur-
ring in these functional forms. The object of
this work is restricted to determining a
consistent empirical fit and not to draw con-
clusions about atomistic processes.

The phase diagram is shown in Fig. 1.
Boundaries between the alpha (body cen-
tered-cubic), gamma (face-centered-cubic),
and epsilon (hexagonal-close-packed) phases
are taken from Bundy [2]. The melting curve
is from Strong[3], and the Curie transition
is from Leger et al.[4]. The projection of the
Hugoniot onto the P-T plane is from the
present work.

Many empirical equations of state have
been formulated to fit limited classes of ex-
perimental data. The equation of state for-
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Fig. 1. Phase diagram of iron. The alpha, gamma and

epsilon phase boundaries are from Bundy [2]. The melting

curve is from Strong[3]. The Curie transition is from
Leger[4].

mulations of Soviet shock wave researchers
have been reviewed by Al’tshuler et al.[5].
Independent terms for the lattice and elec-
trons were used. They assumed a Griineisen
equation of state for the lattice and deter-
mined the Griineisen parameter from the
Dugdale-MacDonald relation. Only shock
data were used to determine the fit.

The Gibbs potential of iron has been con-
sidered by metallurgists investigating the
phase stability of iron and iron rich alloys. The
heat capacities of the « and y phases have
been extrapolated from the stability field of
each phase into the other by separating the
heat capacities into lattice, exchange, and
electronic components [6, 7].

The difference between the Gibbs potential
of « and vy iron was later formulated as a
function of pressure as well as of temperature
[8], and potential difference between the «
and € phases of pure iron was estimated by
extrapolating from data on iron-ruthenium
alloys[9-11].

The objective of the theoretical metallur-

gists was only to determine approximate
values of the Gibbs potential, not to deter-
mine a function from which all other functions
could be determined accurately.

In the present work a potential is formul-
ated from which accurate pressure-volume
isotherms may be derived. Also, care is taken
with the anharmonic effect (Griineisen para-
meter, or, equivalently, thermal expansivity),
so that the difference between isotherms,
isentropes, and Hugoniot curves are accurate.

2. SEMI-EMPIRICAL EQUATION OF STATE

Assume that the Hamiltonian for an assem-
bly of iron atoms is the sum of independent
terms for the lattice, the exchange interaction,
and the conduction electrons,

H=H,+H,+H.. (1)

This assumption of independent terms is not
rigorously correct, for both the lattice poten-
tial and the exchange interaction are affected
by the conduction electrons. Then, the as-
sembly partition function is a product of
independent factors

Q = QlQ.z'Qe 53 2 €Xp (_H/kT) 2)

where the summation is over all states, and
k is Boltzmann’s constant. The Helmholtz
potential is a sum of independent terms,

A=A +A,+A,=—kTIn Q.  (3)

All extensive thermodynamic variables are
defined for one mole. The number of atoms,
N, is Avogadro’s number.

The lattice Helmholtz potential is devel-
oped for a quasiharmonic model. It is assumed
that the internal degrees of freedom of the
lattice (the normal modes) are independent
oscillators and that the temperature is low
enough that the thermal motion of the oscil-
lators is harmonic. However, the macro-
scopic compression of the solid may be large
enough that the nonlinearity of the interatomic




